Tutorial on Partial Reconfiguration
of Image Processing Blocks using
Vivado and SDK

Nishmitha Naveenchandra Kajekar
nishmi@unm.edu

Department of Electrical and Computer Engineering
University of New Mexico

Contents

Motivation
Introduction
Contribution
Requirements
Design Description
Design Procedure
Results

Web Tutorials

Conclusion

Future Work

Motivation

= DRASTIC work in ivPCL which is mainly focused on the development of
adapftive video processing systems.

= Need to prepare tutorials for DRASTIC.

Pareto-optimal HW realizations Realization Selactor

and estimated objectives | Multi-objective
Model € hist
> iapti ~ Pareto Front] MODEL Istory
o | Objectives;, > St €
o Prediction BUILDING Paramster
= | Objectives, > — .
o hardware history
= gbjlect!ves3 f realizations CONSTRAINTS
bjectives, > E EXTERNAL
CONSTRAINTS

Objectives, [N > CONTROL BLOCK

Estimated n sets of: I

objectives bitstreams+requency

Parameters Outputs
Measurements
Inputs
Measurements
STATIC HW DYNAMIC HW
components components
VIDEO VIDEO

INPUT DYNAMIC DIGITAL SYSTEM OUTPUT

Infroduction

= Partial Reconfiguration is the modification of an operating FPGA design by
loading a partial configuration file which will reduce configuration tfime and
save memory.

= This is a tutorial which describes how to create one reconfigurable partition
which implements two reconfigurable module design i.e. Sobel Edge
Detector and Gaussian Filter.

» /edBoard is used to verify the design in hardware using a SD card.

Contribution

= Designed a website where step-by-step Instructions to perform Partial
Reconfiguration is given with Video Tutorials.

= This tutorial can be found under

= Modified and Implemented Xilinx Partial Reconfiguration using Vivado
project on ZedBoard.

= Designed and Implemented Partial Reconfiguration using an IP which has
Reconfigurable modules of Image processing blocks.

http://ivpcl.unm.edu/ivpclpages/Research/drastic/drastic.php

Requirements

= Software Tools:
= Vivado Design Suite 2015.2

= Xilinx Software Development Kit 2015.2
= MATLAB

= Terminal program (Teraterm)

=» Hardware Tools:

» ZedBoard (Zyng™ Evaluation and Development)

= |icensing:

= Xilinx Parfial Reconfiguration

Design Description

Processing system (PS)
. 5D Card
Programmable Logic(PL) DDR3 (513 M) ' n (RM binary
ARM cp:: 1::§III-:r files,
Image text
Cortex -9 files,
Boot.bin)
. . AXI
Image Procassing Logic A¥|3
Interconnect M_AXI_GFO UART
£ Computer
;/ auatre| Block
~ AXIIPIC
Filter

Design Procedure

[Convert Image file into Text file]

v

[Generate DCF's for static design and KM modules]

[Load Static and one RM for RP]
L4
[Define Reconfigurable Properties and Reconfigurable Partition]

[Create and Implement first Configuration]

v

[Create and Implement Second Configuration]
-

-~ =

Create Blanking Configuration

-
Run PR “erify

-
Generate Bit files

v

Generate Software Application

e -

v
[Test the Design]

v
Ewenerate image file from text file]

Directory Files

» Extract the PRLab.zip, then the Design Directory Structure is as follows:
= Bitstreams
= Checkpoint
= Implement

= Sources - IP, source for RM, Software Application, XDC

= Synth
= TCL files

Step 1. Convert Image file into Text file

» Read aimage file
» Convert it into grayscale image

= Create aimage.txt file which is written with the image pixel values.

E image.txt - Notepad

File Edit Format View Help

162
lez
162
16l
162
157
163
16l
1a5%
16l
lel
160

v

155
163
160
155
157
156
16l
1el
154
156

154
157

Step 2. Generate DCP’s for stafic
design and RM modules

= Creating the block design called filter_design, instantiate ZYNQ PS along

with filter IP. User Logic (Image

Processing Logic)

rst_processing_system? 0_100M processing_system7_0_axi_periph

.
slowest_sync_clk mhb_reset e | b SO0_AXI
ext reset_in bus_struct_reset[0:0] ACLK .
=lalix_reset_in peripheral_reset[0:0] ARESETN[0:0] H—H myfilter_0
—mb_debug_sys_rst Interconnect_aresetn[0:0] i S00_ACLK D%g MOO_AXT o | | £ 500 _AXT
=dcrm_locked peripheral_aresetn[0:0] » S00_ARESETN[0:0] = = s00_axi_aclk
MOD_ACLK s00_axi_aresetn
Processor System Reset il MOO_ARESETN[0:0]
hyfilter_v1.0 (Pre-Production)
processing_system?_0 AXI Interconnect
PTP_ETHERNET_0k |||
oorR ||} { DDR
FIXeD 104+ ||| D FIXED_IO
usBIND_0 < |||
- M_AXI_GPO < [
et e ZYNG TTCO_WAVED_OUT L
TTCO_WAVEL_QUT =
TTCO_WAVE2_QUT =

FCLK_C LKO A
FCLK_RESETO_N

ZYNQ7 Processing System

Step 3: Load Static and one RM for RP

= Since all required netlist files (dcp) for the design are now available, we can
use Vivado to floorplan the design, define Reconfigurable Partitions and
add Reconfigurable Modules.

» We need to the open the static check point created.

| Checkpoint Design - xc7z020clg484 1
Metist

= 0|

3 Afilter_design_wrapper
B Mets {130)
=-[@] filter_design_i (filter design)
B} Nets (438)
--i_l;\ Leaf Cells (2)
=-[E] myfilter_0 (filker_design_myfilter_0_0)
B Mets (99) Bl k B
H-= Leaf Cells (1) OC OX
=-[E] inst {(myfilter w1 0}
G Mets (83)
=& myfilter_w1_0_S00_aAXI_inst (myfilter_vi1_0_S00_AxD
- Mets (823)
- Leaf Cells (772)
LJEl filter0 (filter)

F-[@E] processing_system?7_0 (filter_design_processing_system7_0_0)
-[E] processing_system?_0_axi_periph (filter_design_processing_system7_0_axi_periph_0)
E-[E] rst_processing_system7_0_100M (filter_design_rst_processing_system7_0_100M_0)

= |Load one RM for the RP by using the read_checkpoint command.

= Now you can see the Black box would be no more as you loaded the
reconfigurable module

Metist

= H|[E]
30 filter _design_wrapper
= Mets (130)
=-[@] filber_design_i (filter_desian)
EH-E MNets (438)
--II:"‘; Leaf Cells (2}
=-[@E] myfilber _0 (filter _desion_myfilter_0_0)
- Mets (99)
FH-i= Leaf Cells (1)
=-[@& inst (myfilter_wi_0)
- Mets (83)
=-[E] myfilber_w1_0_S00_AXI inst (myfilter w1 0 S00 AXI)
H-E= Mets (835)
B Leaf Cells (772)
-{@] filberd (filter)

-[E] processing_system7_0 (filter _design_processing_system7_0_0)
&-[E] processing_system7_0_axi_periph (filter _design_processing_system7_0_axi_periph_0)
E-[@] rst_processing_system7_0_100M (filker_design_rst_processing_system7_0_100M_0)

= Make a note of the Resources utilized under the stafistics tab.

Step 4: Define Reconfigurable Properties
and Reconfigurable Partitions

Define the reconfigurable properties 1o the loaded RM by setfting the
HD.RECONFIGURABLE property.

Next you must floorplan the RP region.

Designed pblock

Step 5: Create and Implement first
Configuration

Opftimize, place and route the design.

nblock filterD

Step 6: Create and Implement second
Configuration

Step 7: Create Blanking Configuration

This has no logic for either reconfigurable
parfitign, simply outputs driven by ground.
Outputs can be tied to VCC if desired,
usihg the HD.PARTPIN_TIEOFF property.

Step 8: Run PR Verity

You must ensure that the static implementation, including interfaces to
reconfigurable regions, is consistent across all Configurations. To verify this,
you run the PR_Verify utfility.

Step 9. Generate Bit files

» After all the Configurations have been validated by PR_Verity, full and
partial bit files must be generated for the entire project.

|| blank.bin 4/9/2016 7:08 PM BIM File 185 KB
|| blank.prm 4/9/2016 7:08 PM PRM File 1KE
|| blanking.bit 4/9/2016 7:08 PM BIT File 3,951 KB
|| blanking_pblock_filter)_partial.bit 4/9/2016 7:08 PM BIT File 185 KB
| | Config_gaussian.bit 4/9/2016 7:05 PM EIT File 3,951 KB
| | Config_gaussian_pblock_filter)_partial.bit ~ 4/9/2016 7:05 PM BIT File 185 KB
|| Config_sobel.bit 4/9/2016 7:02 PM BIT File 3,951 KB
|| Config_sobel_pblock_filter)_partial bit 4/9/2016 7:03 PM BIT File 1585 KB
|| gaussian.bin 4/9/2016 7:06 PM BIM File 185 KB
|| gaussian.prm 4,/9/2016 7:06 PM PRM File 1 KB

sobel.bin 4/9/2016 7:03 PM BIM File 185 KB

—

sobel.prm 4/9/2016 7:03 PM PEM File 1 KB

| -

Step 10: Generate Software
Application

= Create a Board Support Package

= Create a FiterTest application project

» Create a zyng_fsbl application — Bootloader, Used to configure FPGA with bit stream

» Create a Zyng boot image

Step 11: Test the Design

Copy the generated BOOT.bin and the bin files on the SD card along with it
make sure the SD card has the image text files then place the SD card in
the board. Power On the board.

Start a terminal emulator program i.e. TeraTerm. Select an appropriate
COM port. Set the COM port for 115200 baud rate communication.

% COM4:115200baud - Tera Term VT E=SECR™ X

File Edit Setup Control Window Help

[Select the Filter Operation
1: Sobel filter

2: Gaussian filter
@: Exit

>

Step 12: Generate image file from text
file

» Create a matlab file to convert text file to image file.

= Use the given sobel.m and Gaussian.m files in the PRLab.zip folder

Results from ZedBoard

f I\

Original Image

L —

'Afuer Sobel Filter After Goussién Filter

MATLAB Visual Verification

riginol Ioge Af’rér Sobel Filter After Gaussian Filter

Web Tutorials

Partial Reconfiguration on ZedBoard using Xilinx Tools

Partial Reconfiguration has the ability to reconfigure part of the FPGA device while the rest of the device continues to operate. The advantages of using PR is it reduces the dynamic
power consumption, saves space,performance improvement, flexiblity.etc. Here Tutorial on Partial Reconfiguration using Viviado on ZedBoard and Tutorial on Partial
Reconfiguration of Image Processing blocks using Vivado and SDK had been explained in detail with videos.

RM 1

RM 2

Reconfigurable Block

PR_Main.html
PR_Main.html

Conclusion

= This tutorial helps in understanding steps involved in creating a processor
system using Vivado IPI.

» Generating Full bitstreams as well as partial reconfiguration bitstreams
along with bin files.

= Generating the boot image as well as verifying the functionality using
LedBoard.

Future Work

= To perform Partial configuration on large images and on real-time videos.

= The Ultimate goal is to be able to perform PR for heterogeneous video
computing.

References

= Vivado Design Suite Tutorial: Partial Reconfiguration (UG9%47)

= Partial Reconfiguration User Guide (UG702) - For ISE Design Tool
= Vivado Design Suite Tcl Command Reference Guide (UG835)
= Vivado Design Suite User Guide: Designing with IP (UG896)

= Partial Reconfiguration User Guide (UG%09)

= Partial Reconfiguration of a Hardware Accelerator with Vivado Design Suite
(XAPP1231)

= Xilinx University Program on Partial Reconfiguration Flow on Zyng using
Vivado

= Tutorials developed and taught by Prof. Daniel Liamocca

http://www.secs.oakland.edu/~llamocca/EmbSysZynq.html

